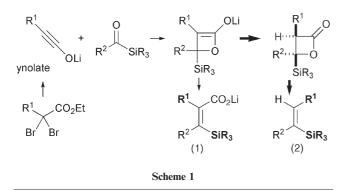
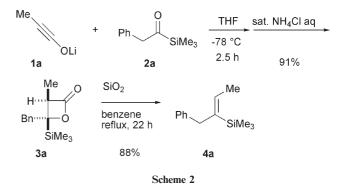
A synthesis of multisubstituted vinylsilanes *via* ynolates: stereoselective formation of β -silyl- β -lactones followed by decarboxylation[†]

Mitsuru Shindo,* Kenji Matsumoto and Kozo Shishido


Received (in Cambridge, UK) 7th December 2004, Accepted 10th March 2005 First published as an Advance Article on the web 29th March 2005 DOI: 10.1039/b418310j

(Z)-Selective synthesis of multisubstituted vinylsilanes was achieved by stereoselective protonation or alkylation of β -silyl- β -lactone enolates, prepared by cycloadditions of acylsilanes with ynolates, followed by decarboxylation.

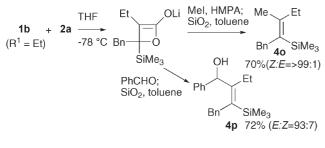

Vinylsilanes are important synthetic tools in organic chemistry.¹ Although various methodologies for their preparation have been reported, there have been few reports on a successful, widely useful stereoselective olefination of acylsilanes.² Recently, we reported a stereoselective olefination of acylsilanes, *via* torquoselective electrocyclic ring-opening of β -lactone enolates derived from ynolates, giving (*Z*)- β -trialkylsilyl- α , β -substituted acrylates, that is, multisubstituted vinylsilanes [Scheme 1 (1)].³ Herein, we report a new strategy for the stereochemically complementary olefination of acylsilanes with ynolates *via* a stereoselective β -silyl- β -lactone formation–decarboxylation sequence [Scheme 1 (2)].

In our previous communication, we reported the cycloaddition of the acylsilane **2a** with the ynolate $1a^4$ to furnish the β -lactone enolate, which is ring-opened *at room temperature* to provide the (Z)- β -silylacrylate without stereoisomers. When this reaction was carried out at - 78 °C, the corresponding β -lactone **3a** was isolated in 91% yield after protonation (Scheme 2). The diastereomeric ratio of **3a** was found to be very high and the minor isomer could not be detected by ¹H-NMR spectroscopy. After recrystallization, **3a** underwent thermal decarboxylation⁵ under reflux in benzene in the presence of silica gel, to provide the (Z)-vinylsilane **4a** in 88% yield without any detectable (E)-isomer.

Encouraged by this excellent result, we next examined the generality of this synthesis of vinylsilanes. Due to the instability of some of the β -lactones **3** toward silica gel, decarboxylation was carried out without purification of **3**.⁶ Table 1 shows the results of

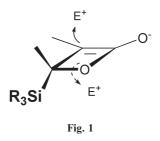
† Electronic supplementary information (ESI) available: representative procedures and spectral data for compounds 2 and 4. See http:// www.rsc.org/suppdata/cc/b4/b418310j/ *shindo@ph.tokushima-u.ac.jp

the reactions of various combinations of acylsilanes 2^7 and ynolates 1 to furnish the disubstituted vinylsilanes 4. The methyl, ethyl, isopropyl, and phenyl-substituted ynolates afforded the vinylsilanes in good yield with high Z-selectivities (entries 1-4). Although the minor isomer could not be detected by ¹H-NMR spectroscopy at the β -lactone stage,⁸ a few percent of the minor (E)-isomers were detected by ¹H-NMR spectroscopy and HPLC (entries 1-3). While the tert-butyl substituted ynolate did not give the desired product (entry 5), presumably due to steric reasons, the trimethylsilyl substituted ynolate afforded bis(trimethylsilyl)alkenes in moderate yield with (E)-selectivity (entry 6). According to the ¹H-NMR spectrum of the intermediate, the first step of the cycloaddition should have proceeded cleanly, but gave instead an almost 1:1 mixture of stereoisomers. At the decarboxylation step, the route to the (Z)-isomer suffers from steric compression and took place very little. Benzoylsilanes and functionalized acylsilanes provided vinylsilanes in good yields with Z selectivities (entries 8-13). The acryloylsilane, however, did not give the desired product but rather a complex mixture at the first stage (entry 14). As for substituents on the silane, triethylsilyl, tertbutyldimethylsilyl, and benzyldimethylsilyl groups could also be used (entries 7, 9, 12, and 13). In the case of the benzyldimethylsilyl group, the Z/E ratio decreased slightly (entry 12) compared with that of the trimethylsilyl one (entry 11).

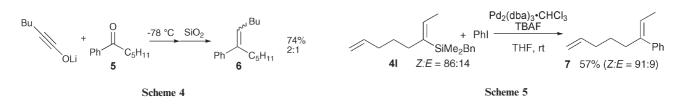

Instead of protonation, alkylation of the β -lactone enolates was attempted. As shown in Scheme 3, methylation by MeI assisted with HMPA, followed by decarboxylation, provided the trisubstituted vinylsilane **40** in good yield with excellent Z-selectivity. The aldol reaction, followed by decarboxylation, was also performed with benzaldehyde to afford the desired vinylsilane **4p** with good *E*-selectivity. In both cases, the electrophiles were introduced *trans* to the silyl group.

The E/Z selectivity is determined in the protonation (or alkylation) of the β -lactone enolates, because the decarboxylation

Table 1 Synthesis of vinylsilanes via decarboxylation of β -lactones derived from cycloaddition of acylsilanes with ynolates


			$R^{1} \longrightarrow R^{2} \longrightarrow Si \xrightarrow{R^{2} \times Si} R^{2} \xrightarrow{O} Si \xrightarrow{Si} R^{2} \xrightarrow{Si} R^{2} \xrightarrow{R^{2} \times Si} R^{2} \xrightarrow{R^{2} \times Si}$						
Entry	R^1	2				4			
		\mathbb{R}^2		Si	Decarboxylation ^a	Yield (%)		$Z:E^b$	
1	Me	2a	PhCH ₂	Me ₃ Si	A, 21 h	4 a	72	98:2	
2	Et	2a	PhCH ₂	Me ₃ Si	A, 28 h	4b	74	95:5	
3	<i>i</i> Pr	2a	$PhCH_{2}$	Me ₃ Si	A, 22 h; B, 6 h	4c	78	94:6	
4	Ph	2a	PhCH ₂	Me ₃ Si	B, 4 h	4d	60	>99:1	
5	tBu	2a	PhCH ₂	Me ₃ Si		4e	0^c	—	
6	Me ₃ Si	2a	PhCH ₂	Me ₃ Si	B, 10 h	4 f	46	19:81 ^d	
7	Me	2g	PhCH ₂	Et ₃ Si	A, 21 h	4g	78	95:5	
8	Me	2h	Ph	Me ₃ Si	A, 2 h	4h	62	92:8 ^e	
9	Me	2i	Ph	Et ₃ Si	A, 15 h	4 i	71	88:12 ^e	
10	Me	2j	4-(PivO)C ₆ H ₄	Me ₃ Si	A, 18 h	4j	64	92:8 ^e	
11	Me	2k	CH2=CH(CH2)3	Me ₃ Si	A, 17 h	4k	72	94:6	
12	Me	21	$CH_2 = CH(CH_2)_3$	BnMe ₂ Si	B, 4 h	41	69	86:14	
13	Me	2m	$CH_3O(CH_2)_2$	t-BuMe ₂ Si	A, 17 h	4m	84	93:7	
14	Me	2n	CH ₂ =CH	PhMe ₂ Si		4n	0^c		

^{*a*} Condition A: refluxed in benzene. Condition B: refluxed in toluene. ^{*b*} The stereochemistry was determined by NOE experiments except for entries 8, 9 and 10. ^{*c*} The cycloaddition gave a complex mixture. ^{*d*} At the β-lactone stage, the diastereomeric ratio was 55:45, as judged by ¹H-NMR spectroscopy. ^{*e*} After protodesilylation with HI, the coupling constant between the vinylic protons of the resulting alkenes was 15.6 Hz, which shows *trans* relationship of the protons.⁹



is supposed to be a *syn*-elimination (retention).¹⁰ When the phenyl pentyl ketone **5** was reacted according to the same protocol, the resulting trisubstituted olefin **6** was a 2:1 mixture of geometrical isomers (Scheme 4).¹¹ This remarkable difference in the stereo-selectivity would be due to the steric and stereoelectronic effects of the trialkylsilyl group, that is, the kinetically controlled protonation (or alkylation) of the β -lactone enolates leads to preferential introduction of the proton (or an electrophile) *anti* to the trialkylsilyl group (Fig. 1). These results are in good agreement with Fleming's reports on the protonation/alkylation of β -silyl ester enolates.¹² For example, the selectivity of alkylation is higher than that of protonation, and the selectivity does not depend on the substituents on the silicon.

These results show the high generality of this synthetic method for multisubstituted vinylsilanes, and it should be regarded as a complementary method to our previous olefination, since \mathbb{R}^1 has a *cis* relationship with the silyl group here and a *trans* relationship in the previous case. To demonstrate the synthetic utility of this process, the benzyldimethylvinylsilane **4I** (Trost's vinylsilane) was coupled with iodobenzene, catalyzed by palladium, to afford the trisubstituted alkene **7** (Scheme 5).¹³

In conclusion, we have developed a stereoselective synthesis of di- and trisubstituted vinylsilanes *via* protonation or alkylation of β -silyl- β -lactone enolates derived from the cycloaddition of ynolates with acylsilanes, followed by decarboxylation. The stereoselectivity was determined in the protonation or alkylation of β -lactone enolates, which is governed by the steric and stereoelectronic effects of the trialkylsilyl group. The geometry is complementary to our previous olefination of acylsilanes *via*

electrocyclic ring-opening. This methodology would be useful for the stereoselective construction of multisubstituted alkenes.

This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan. K. M. thanks the Japan Society for the Promotion of Science (JSPS) for a research fellowship.

Mitsuru Shindo,* Kenji Matsumoto and Kozo Shishido

Institute of Health Biosciences, The University of Tokushima Graduate School, Shomachi 1, Tokushima 770-8505, Japan. E-mail: shindo@ph.tokushima-u.ac.jp; Fax: (+81)88 633 7294; Tel: (+81)88 633 7294

Notes and references

- For recent reviews, see: (a) I. Fleming, A. Barbero and D. Walter, *Chem. Rev.*, 1997, 97, 2063; (b) M. A. Brook, *Silicon in Organic, Organometallic, and Polymer Chemistry*, Wiley, New York, 2000.
- 2 (a) J. A. Soderquist and C. L. Anderson, *Tetrahedron Lett.*, 1988, **29**, 2425; (b) G. L. Larson, J. A. Soderquist and M. R. Claudio, *Synth.*

Commun., 1990, **20**, 1095; (c) P. Jankowski, K. Plesniak and J. Wicha, Org. Lett., 2003, **5**, 2789.

- 3 M. Shindo, K. Matsumoto, S. Mori and K. Shishido, J. Am. Chem. Soc., 2002, **124**, 6840.
- 4 For reviews, see: (a) M. Shindo, Synthesis, 2003, 2275; (b) M. Shindo, J. Synth. Org. Chem. Jpn., 2000, 58, 1155; (c) M. Shindo, Yakugaku Zasshi, 2000, 120, 1233; (d) M. Shindo, Chem. Soc. Rev., 1998, 27, 367.
- 5 W. Adam and L. A. A. Encarnacion, *Synthesis*, 1979, 388.
 6 Some of the β-lactones can be purified by recrystallization to remove minor isomers.
- 7 Acylsilanes were prepared from silyl thioacetals, like 2-silyl-1,3-dithianes. See ESI.
- 8 Due to the overlap of peaks in the ¹H-NMR spectrum.
- 9 K. Utimoto, M. Kitai and H. Nozaki, Tetrahedron Lett., 1975, 2825.
- 10 For a review, see: A. Pommier and J.-M. Pons, Synthesis, 1993, 441.
- 11 (a) M. Shindo, Y. Sato and K. Shishido, J. Am. Chem. Soc., 1999, 121, 6507; See, also: (b) R. L. Danheiser and J. S. Nowick, J. Org. Chem., 1991, 56, 1176; (c) J. Mulzer and A. Chucholowski, Angew. Chem., Int. Ed. Engl., 1982, 21, 777.
- 12 R. A. N. C. Crump, I. Fleming, J. H. M. Hill, N. L. Reddy and D. Waterson, J. Chem. Soc., Perkin Trans. 1, 1992, 3277.
- 13 B. M. Trost, M. R. Machacek and Z. T. Ball, Org. Lett., 2003, 5, 1895.